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Abstract. This paper examines the ground-water flow problem associated with the injection and recovery of
certain corrosive fluids into mineral bearing rock. The aim is to dissolve the mineralsin situ, and then recover
them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically
and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered.
A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a
boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as
it is achievable in old mine tunnels, for example.
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1. Introduction

Mineral leaching is a technique for extracting minerals from underground, without using
conventional mining techniques of excavation, blasting, crushing and haulage of the ore to
the surface for processing. In view of the efficiency of conventional mining operations for
high-grade ore deposits, it is unlikely that mineral leaching would be viable in rich ore lodes,
but instead, it could be expected to be useful in regions of low ore concentration. The idea
is simply to inject a corrosive fluid into the mineral-bearing rock and dissolve some of the
mineral, and then to pump out the pregnant liquor through other recovery wells.In situ min-
eral leaching is typically used to extract nonferrous metals such as copper or uranium, and
a discussion of the technique may be found in chapter eight of the book by Bartlett [1]. The
leaching fluid will be referred to simply as ‘acid’ in this paper, although it might be a variety
of substances, such as sulphuric acid produced from the oxidation of underground pyrites,
or ammonium carbonate [1], or dissolved sulphur dioxide [2]. In the case of gold leaching,
substances involving cyanides and iodine have been used as lixiviants [3].

Leaching typically occurs in one of two forms. In some cases, mineral-bearing deposits
that have been brought to the surface can be irrigated with a corrosive fluid, and the dissolved
minerals collected in irrigation channels at ground level. This is referred to as heap leaching
or dump leaching, and a model for this situation is given by Pantelis and Ritchie [4], for
example. The other situation is the one of interest in the present paper, and involves leaching
the orein situ, often deep underground. In this case, access to the ore is obtained by drilling
into the rock, pumping in an acid solution under pressure, and then recovering the dissolved
mineral through other wells. Several different arrangements of injection and recovery wells
are outlined by Bartlett [1].
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There are clearly many difficulties associated with the successful operation of anin situ
mineral leaching facility. Perhaps the most obvious is the environmental danger associated
with injecting corrosive liquors deep underground, and the potential for pollution of under-
ground aquifers, for example. Legal restrictions may apply to this type of mining operation,
and this is addressed in the article by Crockett [5]. There are also numerous technical dif-
ficulties, aside from the practical problems associated with drilling and pumping. It is not
an easy matter to determine where injected liquor goes, once it has been pumped into the
mineralized rock [6], and this is particularly true if there are cracks or faults in the geology of
the site. In addition, it is possible that dynamic changes in the properties of the leached rock
can occur during the leaching operation, as a result of the chemical reactions involved. For
example, reduced conductivity may result through chemical precipitation, as is discussed in
the article by Schmidt, Earley and Friedel [7]. This may result in the formation of channels
in the rock, through which the leaching fluid flows preferentially. A linearized analysis of
the channelling instability in the context of upwelling melt in the Earth’s mantle has been
presented by Aharonov, Whitehead, Kelemen and Spiegelman [8], and it is possible that a
similar analysis may be relevant here also.

In this paper, we address the simple question of where the leaching liquor goes after it has
been injected into the rock, and how it may be possible to recover all the liquor. Thus we
ignore the effect of chemical reactions, of the type considered in the models by Lapidus [9]
and Dewynne, Fowler and Hagan [10], for example. In addition, the dynamical changes to the
rock properties caused by these reactions [7] are also ignored, and for simplicity, we assume
that the rock properties are homogeneous; thus, no strata, fissures or faults are considered
here.

In a practical large-scale field mineral leaching operation, the geometry of the groundwater
flow is likely to be highly three-dimensional, since it is the usual practice to lay out a staggered
grid pattern of alternate injection and production wells drilled from the surface, as indicated
by Bartlett [1]. Indeed, Forbes [11] suggested that complete recovery of the leaching liquor
may be possible in such a practical three-dimensional situation, by drilling spatially periodic
wells, and arranging the geometry so that recovery occurred at points directly below the acid
injection points. Furthermore, water would be injected below the recovery points, to prevent
any acid escaping down further into the rock. In practice, the injection of acid, the recovery of
liquor and the injection of water at each of the wells could be achieved by a system of three
concentric pipes.

The purpose of the present paper is to examine a somewhat simpler geometry than that
suggested by Forbes [11], as a test of whether such a mineral leaching scheme might actu-
ally achieve its objective of complete acid recovery. For this reason, we study here a two-
dimensional leaching situation, in which the injection and extraction wells are equivalent to
long horizontal perforated pipes. This is obviously a mathematical simplification of the situ-
ation of greatest interest, but it is by no means lacking in practical interest. Indeed, Bartlett [1]
indicates that new drilling technology, developed in the first instance for use in the petroleum
industry, has made horizontal wells possible, and there may be situations where this is the
preferred method of leaching a particular mineral deposit. In addition, a two-dimensional geo-
metry is possibly a good model for the case in which horizontal wells are drilled into the rock,
from the side wall of an old mine tunnel; exactly this situation was trialled experimentally at
Mount Isa, in the far north of Australia.

Under these idealizations, the flow through the rock may be assumed to be governed by
Darcy’s law. In addition, the problem will be taken to be steady, in view of the long times
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required for practical leaching operations (these can be of the order of years [7]). It will be
assumed that the rock is dry, so that the pore pressure of fluid within it is normally zero, and
that injected fluid therefore forms a sharp boundary in the rock, that separates a fully saturated
zone from a totally dry region. Again, this is an idealization of reality, but in practice it is
unlikely to cause major error, particularly if the partially saturated region is confined to a
relatively narrow boundary layer at the edge of the wetted region of rock.

The use of Darcy’s law to model groundwater flow is well established, and its application
in the petroleum industry is discussed by Hubbert [12], for example. Complex-variable tech-
niques for two-dimensional groundwater problems, of the type considered in this paper, are
outlined in the text by Verruijt [13] and presented in detail by Strack [14], who also gives an
introduction to boundary-element methods. Flow in the neighbourhood of sources and sinks
is discussed by Bear [15, page 319].

Recently, there has been considerable interest in applying complex-variable and boundary-
integral techniques to solving free-boundary flow problems that arise in the petroleum in-
dustry. An important problem in this field is the interaction between layers of subterranean
oil and water, leading to the formation of ‘water cones’ in some situations, when the oil is
extracted. Problems of this type were originally formulated in the classical book by Muskat
[16]. Lucas, Blake and Kucera [17] have studied the water-coning problem in an oil reser-
voir of infinite lateral extent. They modelled the extraction point as a mathematical sink,
and assumed that Darcy’s law held in both the water and the oil layers. These assumptions
were discussed in detail by these authors, and further references may be obtained from their
paper. Their work was later generalized by Lucas and Kucera [18] to account for water coning
at multiple extraction wells. In two-dimensional flow, Zhang and Hocking [19] and Zhang,
Hocking and Barry [20] have studied withdrawal from a vertically confined oil layer through
a horizontal line sink, using conformal mapping and boundary-integral techniques, and found
a limiting profile with a vertical cusp at the interface, analogous to the cone that is formed
in three-dimensional flow. Their work has been generalized to the three-dimensional case by
Zhang and Hocking [21].

In this paper, we investigate the situation in which the injected leaching acid in the rock is
supported by a region into which water has been pumped. An additional practical difficulty,
therefore, is the possibility that the interface between the two fluids may become unstable,
resulting in the formation of ‘fingers’. A situation of this type has been discussed by Tan
and Homsy [22], and Butts and Jensen [23] give experimental verification of fingering in oil
penetrating heterogeneous sand. This complicated effect is ignored in the present model, since
the rock is taken here to be homogeneous; in addition, it must be assumed that the density of
the mineral-bearing leaching fluid is not too greatly different from that of the supporting water.

The model equations appropriate for this situation are outlined in Section 2. We have found
that the most efficient method for solving these equations is by making use of a boundary
integral approach, following Martinez and Mctigue [24], Forbes, Watts and Chandler [25]
and Forbes [11], and this formulation is given in Section 3. A brief outline of the numerical
method used to solve this integral equation is given in Section 4, and Section 5 contains a
simple but useful asymptotic approximation to the solutions. Results are shown in Section 6,
and the concluding Section 7 discusses the practical use of these results.
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2. The two-dimensional model

In this paper, the complete recovery of the leaching liquor is achieved by using a spatially
periodic array of injection and recovery wells, similar to that sketched in Figures 1. We will
begin by outlining the problem using actual dimensional variables, and then move to the use
of dimensionless quantities for the remainder of the paper.

Consider a vertical arrangement of injection and extraction points. Acid is injected into
the rock, a distanceH below the ground. At some distanceL below this point is a recovery
well, at which fluid is pumped back up to the surface. Below this recovery site is a third point
at which water is injected; this occurs at a distanceD below the recovery point, which is a
total depthH + L + D below ground. Now suppose that this entire structure, of three wells
arranged vertically, is translated sideways by some distance 2S both to the left and to the right.
This pattern is repeated so that the structure is periodic in the horizontal direction, with period
2S, and a schematic illustration of the situation is given in Figure 1(a).

By virtue of its periodicity, the problem is equivalent to a single vertical array of injection
and extraction points, with effective impermeable boundaries atx = S andx = −S. Each
acid injection point (aty = −H ) creates a volume fluxQA of leaching acid per unit width,
and the recovery points (at depthy = −H − L) remove a volumeQR per unit width per unit
time. Beneath these points, at the depthy = −H − L − D, water is injected at the volume
rateQW per width of rock, as indicated in Figure 1(a).

According to Darcy’s law, the percolation velocityq of fluid through the rock is given by
the formula

q = −C∇(p + ρgy), (1)

wherep is the pore pressure of fluid in the rock andρ is its density. The downward acceleration
of gravity isg, andC is the usual Darcy constant, which is the rock permeability divided by
the viscosity of the fluid.

Far below the injection and recovery points, wherey → −∞, the pore pressurep of fluid
in the rock drops to zero, so that there is a steady outflow of fluid from the system, with speed
ρgC downwards through the rock. Since there is no fluid flow across the effective boundaries
at x = ±S, by virtue of the periodicity of the leaching arrangement, then it follows from
conservation of mass that

QR + (ρgC)(2S) = QA +QW. (2)

We are now ready to move to the use of dimensionless variables, and these will be retained
for the rest of this paper. The unit of length is chosen to be the depthH of the acid injec-
tion point below ground, and pressure is referred to the quantityQA/C. It turns out that the
problem depends on the six dimensionless parameter groups

σ = S

H
F = QA

ρgHC
λ = L

H
δ = D

H
γ = QR

QA

α = QW

QA

,

in which the ratioσ is obviously the dimensionless half-width of one of the periodic cells in
the x-direction, as is illustrated in Figure 1(b). The second parameterF may be thought of
as a dimensionless injection rate for the leaching acid. From a purely mathematical point of
view, it would be possible to scale this parameter out of the problem formulation altogether,
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Figure 1. (a) A schematic diagram of the two dimensional spatially periodic mineral leaching flow field in
dimensional coordinates, and (b) The non-dimensionalized problem.

since the depthH has not been specified explicitly. Nevertheless, we have chosen to retain
the parameterF here, following Forbes, Watts and Chandler [25] and Forbes [11], since it
involves the actual immersion depthH of the acid injection source, and should therefore be
a quantity of immediate interest to a site engineer. The constantsλ and δ are respectively
the dimensionless depths of the recovery point below the acid injection point, and the further
distance below this point at which the water is injected, and these quantities are likewise
indicated in the dimensionless sketch of Figure 1(b). The ratioα measures the pumping rate
of water into the rock to support the acid plume, andγ is the volume rate (per unit width) of
the total fluid (acid plus water) that must be removed from each periodic cell. In fact, from
Equation (2), this recovery rateγ is given by the formula
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γ = 1+ α − 2σ

F
(3)

in dimensionless variables.
Darcy’s law (1) now takes the form

q = −∇8, (4a)

where it is convenient to define the total pressure to be

8 = p + y

F
, (4b)

which is made up of the fluid pore pressurep plus the hydrostatic componenty/F . In the
wetted region of rock, the fluid is effectively incompressible, since the rock is completely
saturated in this region. Therefore, the divergence of the velocity vectorq is zero, and Equation
(4) then leads to Laplace’s equation

∇28 = 0 (5)

within the saturated region. Deep within the rock, the pore pressurep falls to zero, so that the
condition

8→ y

F
as y →−∞ (6)

applies there. The periodicity of the leaching arrangement in thex-direction allows us to
consider only the portion of rock in the region−σ < x < σ , and the impermeability of these
boundaries to fluid flow leads to the conditions

∂8

∂x
= 0 on x = ±σ. (7)

Suppose that the interface between the wetted and dry rock is represented by the equation
y = ζ(x). The location of this interface is unknown, and so must be found as part of the solu-
tion process. Indeed, it will be seen that, from a mathematical point of view, the determination
of this interface location is the main task to be accomplished, and that once the interface has
been found, all the other quantities of interest can then be obtained. On this interface, the pore
pressurep of fluid in the rock falls to zero, so that

8 = y

F
on y = ζ(x), (8)

and this is therefore the dynamical condition to be satisfied on this unknown surface location.
There is also the kinematic condition

∂8

∂n
= 0 on y = ζ(x), (9)

which expresses the fact that the fluid cannot cross this boundary. Here, the symboln denotes
the unit vector normal to the interface and pointing out of the fluid inundated region of rock.
It is important to observe that, although the boundary conditions (8) and (9) are linear, the
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overall problem is nonetheless nonlinear, since Laplace’s equation (5) must be solved in a
region that is not known in advance.

Near the injection point for acid, the fluid velocity vectorq behaves as a line source of unit
strength. By Equation (4a), the total pressure potential in Equation (4b) therefore has the form

8→ − 1

2π
log

√
x2 + (y + 1)2 as (x, y)→ (0,−1). (10a)

Similarly, the recovery point behaves like a line sink of strengthγ given by the conservation
condition (3), so that

8→ γ

2π
log

√
x2 + (y + 1+ λ)2 as (x, y)→ (0,−1− λ). (10b)

Finally, the water balloon which is injected at depth 1+ λ + δ below the ground produces a
volume fluxα per unit width, and so the pressure potential behaves as

8→ − α

2π
log

√
x2 + (y + 1+ λ+ δ)2 as (x, y)→ (0,−1− λ− δ) (10c)

near this point.

3. The boundary-integral formulation

The problem of solving Laplace’s Equation (5) throughout the wetted region, subject to the
boundary condition (6) far below and the effective wall conditions (7) atx = ±σ , is most effi-
ciently accomplished by making use of an integral equation method. To this end, we first need
to obtain a Green function suitable for the present geometry. This is equivalent to finding the
potential for a line source at an arbitrary point between two parallel walls, and can be solved
using conformal mapping, in a generalization of the result presented by Milne-Thomson [26,
page 284]. Suppose that the source between the walls has the arbitrary position(xP , yP ), and
let the field point(xQ, yQ) be some point in the wetted region at which the effect of the source
is measured. After some algebra, we obtain the Green function in the form

G(P ;Q)

= yP + yQ
4σ

− 1

4π
log

[
exp

(πyP
σ

)
+exp

(πyQ
σ

)
−2 exp

(
π(yP + yQ)

2σ

)
cos

(
π(xP − xQ)

2σ

)]

− 1

4π
log

[
exp

(πyP
σ

)
+exp

(πyQ
σ

)
+2 exp

(
π(yP + yQ)

2σ

)
cos

(
π(xP + xQ)

2σ

)]
. (11)

This function is symmetric with respect to the pointsP andQ; that is,G(P ;Q) = G(Q;P).
In addition, it obeys the effective wall conditions (7). It satisfies Laplace’s Equation (5) at all
points(xQ, yQ), except at the source point(xP , yP ) where the function can be shown to have
the limiting form

G(P ;Q)→− 1

2π
log

√
(xP − xQ)2+ (yP − yQ)2 as P → Q, (12)
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as expected. Finally, if the source pointP is allowed to sink far down into the rock, then it is
straightforward to show that

G(P ;Q)→ yP − yQ
4σ

as yP →−∞. (13)

The Green function in Equation (11) can now be used to construct an integral equation
formulation for the solution of this problem, through the use of Green’s second formula∫ ∫

S

[
8(P )

∂G(P ;Q)
∂nP

−G(P ;Q)∂8(P )
∂nP

]
dSP = 0. (14)

This equation is applied over a volume of some widthW in thez-direction (perpendicular to
the plane shown in Figure 1(b)). The closed surfaceS of this volume consists of the planes
x = ±σ andz = 0 andz = W and the unknown surfacey = ζ(x), along with some surface
infinitely deep within the rock. In addition, the three injection or extraction points, aty = −1,
y = −1− λ andy = −1− λ − δ, are excluded by cylindrical surfaces of widthW , and the
pointQ on the free surface is likewise excluded by a half-cylindrical surface. (Notice that,
if the Green function in Equation (14) is chosen simply to be the number 1, then the mass
conservation condition (3) is recovered).

The contribution to the integrals in Equation (14) from the side surfaces is zero, since
both the pressure potential8 and the Green functionG in Equation (11) satisfy the effective
wall conditions (7). Deep within the rock, the total pressure satisfies the limiting relation (6),
and the equivalent condition for the Green function is given by Equation (13), and thus the
contribution to Equation (14) from this surface is−(yQW)/(2F). Here,yQ = ζ(xQ) is the
point on the surface. The half-cylindrical surface which excludes this surface pointQ from
the volume may be shown to contribute a termW8(Q)/2 to the integral, by virtue of the
condition (12) that is satisfied by the Green function as pointP approaches pointQ.

Finally, the three singular points that represent the injection and extraction of fluid in the
rock may be shown to contribute to the integral in Equation (14). The acid source, at the
point (0,−1), gives a term−WG(0,−1;Q) when the cylindrical surface excluding it from
the volume is allowed to shrink to zero radius about the line source. Similarly, the extraction
point aty = −1− λ contributes

γWG(0,−1− λ;Q)
and the water injection point at(0,−1− λ− δ) adds

−αWG(0,−1− λ− δ;Q)

to the integral.
When all these contributions are written out in full, and the widthW of the test volume is

cancelled from the equation, Green’s second formula (14) yields

1
28(Q)−

yQ

2F
−G(0,−1;Q) + γG(0,−1− λ;Q)

−αG(0,−1− λ− δ;Q)+ CPV
∫ σ

−σ
8(P )

∂G(P ;Q)
∂nP

d`P
dxP

dxP = 0. (15)
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In this equation, the integral is now taken over the unknown interfaceyP = ζ(xP ). In fact,
since the pointQ is also on the interface, the integrand is singular atP = Q, so that a Cauchy
principal value interpretation is needed for the integral, and this is denoted by the letters ‘CPV’
appearing in this equation. The outward-pointing normal to the surface is denotedn, and the
element of length along the surface is

d`P =
√(

dxP
)2+ (dyP )2.

Notice that the kinematic condition (9) of no flow normal to the interface has already been
used in Equation (15). This equation is an extension and generalization of the result presented
by Strack [14], for example.

The function8 at the interface may be replaced byy/F , by virtue of the dynamic condition
(8), and so Equation (15) becomes a relation involving only the unknown interface shape
y = ζ(x). The interface is symmetric aboutx = 0, so that the condition

ζ(−x) = ζ(x) (16)

holds, and after a little algebra, the relation (15) takes the form

−G(0,−1;Q) + γG(0,−1− λ;Q)− αG(0,−1− λ− δ;Q)

+ 1

F
CPV

∫ σ

0
ζP

[
ζ ′P
∂G

∂xP
(−xP , ζP ; xQ, ζQ)+ ∂G

∂yP
(−xP , ζP ; xQ, ζQ)

− ζ ′P
∂G

∂xP
(xP , ζP ; xQ, ζQ)+ ∂G

∂yP
(xP , ζP ; xQ, ζQ)

]
dxP = 0. (17)

This is the integral equation that must be solved to find the location of the interface between
the wetted and dry portions of the rock. At the pointx = 0, the symmetry condition (16)
indicates that the interface must be flat, and at the other end of the domain of integration,
wherex = σ , a fluid stagnation point is expected. From Darcy’s law (4a) therefore,q = 0 at
this point, and then the interface condition (9) shows that the surface must be flat here also.
Therefore, we impose the additional two conditions

ζ ′(x) = 0 at x = 0, σ. (18)

Equations (17) and (18) constitute the integral equation formulation of this problem.

4. Numerical solution

This Section outlines the numerical method used in the solution of the boundary integral
formulation of the problem. Such methods have become somewhat standard in recent years in
the solution of steady free-boundary problems, and so a brief description of the technique is
all that is required here.

The interval 06 x 6 σ over which the interface is to be sought is first discretized into
N − 1 sub-intervals, represented by the pointsx1, x2, . . . , xN . Clearlyx1 = 0 andxN = σ .
The unknown interface is represented by theN discrete point valuesζ1, ζ2, . . . , ζN at these
numerical grid points. The numerical method seeks to solve for an(N−1)-vector of unknowns

u = [ζ1; ζ ′2, . . . , ζ ′N−1]T ,
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and an initial guess is made for these quantities, to begin the iterative solution process. (Notice
that the elevation itself is sought at the first point, but the slopes are to be determined at the
remainingN−2 mesh points). The conditionsζ ′1 = 0 andζ ′N = 0 are specified, in accordance
with Equations (18).

On the basis of the initial guess made for the vectoru of unknowns, the interface shape is
constructed using trapezoidal-rule integration in the form

ζj+1 = ζj + 1
21x

[
ζ ′j + ζ ′j+1

]
j = 1,2, . . . , N − 1.

The integral equation (17) is evaluated at theN − 1 half-mesh pointsxj+1/2 = (xj + xj+1)/2
using composite trapezoidal rule integration. Because the Cauchy singular pointP = Q is
located at the whole mesh points, it may simply be ignored, by symmetry. This equation
gives rise to a system ofN − 1 algebraic equations, which may be written in the vector form
E(u) = 0, and a damped Newton’s method strategy is used to solve this system by iteratively
updating the guess for the vectoru.

5. Asymptotic approximation

It is of benefit to discuss a simple approximate solution to this problem, and this is the topic
of this Section. The solution is of use both as a starting guess for the numerical method of
Section 4, and as a means of developing some simple but practical inequalities that guide the
operation of this leaching strategy.

If the effective walls atx = ±σ are quite close together, thenσ/F is a small quantity and
it is to be expected that the interface would be nearly flat, at some locationy = Y0. In that
case, the solution for the total pressure potential8 can be written down at once, using the
Green function (11) and the method of images.

For a flat interface at the locationy = Y0, the acid injection point(0,−1) has an image
point at(0,2Y0 + 1). Similarly, the recovery point and the water injection point have images
at (0,2Y0 + 1+ λ) and(0,2Y0 + 1+ λ+ δ) respectively. The solution for the total pressure
8 in the regiony < Y0 is therefore

8(xQ, yQ) = Y0

F
+ [G(0,−1; xQ, yQ)+G(0,2Y0 + 1; xQ, yQ)

]
−γ [G(0,−1− λ; xQ, yQ)+G(0,2Y0 + 1+ λ; xQ, yQ)

]
+α[G(0,−1− λ− δ; xQ, yQ)+G(0,2Y0 + 1+ λ+ δ; xQ, yQ)

]
. (19)

It may be shown that the three limiting conditions (10a,b,c) are satisfied by this solution (19),
which also fulfils the requirement (8) deep within the rock asyQ → −∞. In addition, a
certain amount of algebraic manipulation shows that the approximate solution (19) satisfies
the Neumann condition∂8/∂yQ = 0 on the lineyQ = Y0, and this is the equivalent of the
kinematic condition (9) to this order of approximation.

It remains to satisfy the dynamic interface conditionp = 0 expressed by Equation (8). At
this order of approximation, the appropriate condition is

8(0, Y0) = Y0

F
, (20a)
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in which

8(0, Y0) = Y0

F
+ [G(0,−1;0, Y0)+G(0,2Y0+ 1;0, Y0)

]
−γ [G(0,−1− λ;0, Y0)+G(0,2Y0 + 1+ λ;0, Y0)

]
+α[G(0,−1− λ− δ;0, Y0)+G(0,2Y0+ 1+ λ+ δ;0, Y0)

]
. (20b)

After some algebra, it may be shown that this relation (20) gives rise to a transcendental
equation for the interface heightyQ = Y0. This condition is

Y0− 1

F
+ γ λ− αλ− αδ

2σ
− 1

π
log

∣∣∣∣exp
(−π/σ )− exp

(
πY0/σ

)∣∣∣∣
+γ
π

log

∣∣∣∣exp
(−π(1+ λ)/σ )− exp

(
πY0/σ

)∣∣∣∣
−α
π

log

∣∣∣∣exp
(−π(1+ λ+ δ)/σ )− exp

(
πY0/σ

)∣∣∣∣ = 0. (21)

This is a complicated expression for the heightY0 of the interface, but it can be solved easily
enough numerically, and we use Newton’s method for this purpose. In this way, Equation (21)
serves as a valuable check on the numerical accuracy of the solutions obtained by the full
scheme outlined in Section 4, and has acted as a guide for the numberN of numerical grid
points needed to obtain solutions to a required degree of accuracy.

The approximation (21) also serves as a useful guide for the parameter regions in which
solutions of the type we are seeking are likely to be found. Since the stagnation point at
(0, Y0)must lie above the acid injection point aty = −1, thenY0 > −1, and so it follows that
exp(πY0/σ ) > exp(−π/σ ). Therefore, if we make the approximation

exp(πY0/σ )− exp(−π/σ ) ≈ exp(πY0/σ )

in Equation (21), with similar approximations in the other two logarithmic terms, then we are
led to the simple result that

Y0 ≈ −1+ (1− 2σ/F)λ− αδ
2σ/F

. (22)

In many instances, the simplified result (22) is actually a close approximation to the value of
Y0 obtained numerically from the transcendental Equation (21), but more importantly, it leads
to some very useful inequalities.

As the interface lies above the acid injection point, thenY0 > −1, and the simplified
formula (22) at once suggests the requirement

1

α

(
1− 2σ

F

)
>
δ

λ
. (23)

Furthermore, for the inequality (23) to be realized at all, it is necessary to impose the extra
condition

σ <
F

2
. (24)
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These two inequalities (23) and (24) have proven to be extraordinarily useful in choosing
parameter values for this study, and our experience is that the full numerical method of Section
4 will only converge to a solution when these two inequalities are satisfied.

6. Presentation of results

We begin this Section with an example of a flow field that strongly satisfies the main ob-
jective of this study, which is to produce a solution for which rock is leached but none of
the introduced acid escapes into the rock. A cross-section of a portion of such a flow field
is presented in Figure 2. In this diagram, as for the rest of this paper, the parameterF has
been fixed at the valueF = 0·1. As explained in Section 2, this is not an important parameter
from a purely mathematical point of view, since it can be scaled out of the problem altogether.
Physically, however, it retains significance as a means of defining length scales in anin situ
leaching experiment, and the valueF = 0·1 corresponds approximately to an injection depth
of 2 kilometres, at a seepage rate of about 1 centimetre per day deep within the wetted rock,
and an injection rate for acid of about 1 litre per minute per metre width.

Figure 2 shows a portion of the rock in the interval 0< x < σ , for the caseσ = 0·01. The
parametersλ andδ have the valuesλ = 0·02 andδ = 0·01, which means that the leaching acid
is injected at the pointy = −1 at the left of this figure, the fluid recovery occurs at the point
y = −1·02 and the water is injected at the point wherey = −1·03. The volume injection
rate of water per width isα = 1·4, so that 40% more water is being injected than leaching
acid. This then forces the volume withdrawal rate of fluid per width, at the point(0,−1− λ),

0 0.002 0.004 0.006 0.008 0.01
−1.04

−1.03

−1.02

−1.01

−1

−0.99

−0.98

x

y

surface

Figure 2. A portion of a computed flow field for 0< x < σ , with parameter valuesF = 0·1,
σ = 0·01, λ = 0·02, δ = 0·01 and water injection rateα = 1·4. The surface of the wetted region of rock is
also shown.
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to beγ = 2·2, as indicated by Equation (3). There wereN = 241 numerical grid points
used in this solution, and the stagnation point above the acid source is computed to occur at
heighty = −0·9895. From the asymptotic solution (21), the approximate interface height
is computed to beY0 = −0·9890, which shows that agreement between these two values is
extremely good, even for this large water injection rateα = 1·4, which as will be seen later,
is close to a maximum permissible value.

The interface is shown in Figure 2 for this case, and was obtained using the numerical
method of Section 4. Once this interface has been obtained, it is then straightforward to com-
pute the total pressure8 at any desired point within the rock. We follow essentially the same
procedure that led to the development of Equation (15), except that now the pointQ is internal
rather than being on the wetted surface, and so it is excluded from the volume in Equation (14)
by a full cylindrical surface, which gives a contributionW8(Q) to that equation. Thus, for
any internal pointQ, the pressure is obtained from the formula

8(Q) = yQ

2F
+G(0,−1;Q) − γG(0,−1− λ;Q)+ αG(0,−1− λ− δ;Q)

− 1

F

∫ σ

0
ζP

[
ζ ′P
∂G

∂xP
(−xP , ζP ; xQ, yQ)+ ∂G

∂yP
(−xP , ζP ; xQ, yQ)

−ζ ′P
∂G

∂xP
(xP , ζP ; xQ, yQ)+ ∂G

∂yP
(xP , ζP ; xQ, yQ)

]
dxP . (25)

Fluid seepage velocities in thex- andy-directions have been computed by straightforward
finite-difference approximations to thex-and y-derivatives of the pressure computed from
Equation (25), according to Darcy’s law (4a).

The fluid velocity vectors are shown in Figure 2 as small arrows. It is clear that the acid in-
jected at the point(0,−1) floods a volume of rock before it is all pumped out at the extraction
point (0,−1·02). Some of the water injected at(0,−1·03) is also withdrawn at the extraction
point, while the rest of it escapes away deep into the rock. Thus the water injected at the point
(0,−1− λ − δ) does indeed act to block the acid moving down below the extraction point
and escaping. This point is amplified in the following discussion, by presenting results for the
pressure and vertical velocity component at the edgex = σ = 0·01 of the periodic region.
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Figure 3. (a) Pressure8 and (b) vertical velocityv at the edgex = σ of the periodic region, as a function of depth
coordinatey. Here,F = 0·1, σ = 0·01, λ= 0·02, δ= 0·01 andα = 1·4.
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-0.01       -0.005          0.0        0.005        0.01 

-1.0  
      

-0.995

      

-0.99 

      

-0.985

x

y

α = 1.33

α = 1.44

Figure 4. Two different interfaces corresponding to water injection rates ofα = 1·33 andα = 1·44, for the case
F = 0·1, σ = 0·01, λ= 0·02 andδ = 0·01. The acid injection point is shown, and the scale on both axes is the
same.

Figure 3(a) shows the total pressure8 along the linex = σ as a function of vertical
coordinatey, for the same case as illustrated in Figure 2. The pressure was computed from the
free surface profile using Equation (25). Superimposed on the hydrostatic componenty/F of
the pressure is a clear maximum at abouty = −1·035, and a corresponding pressure minimum
at abouty = −1·02. These local maximum and minimum are clear evidence for the presence
of stagnation points at the effective wallx = σ , and indicate that there are streamlines emanat-
ing from both the water injection point and the recovery point, and terminating at the effective
wall. This confirms that the acid injected at(0,−1) is blocked by the water balloon, and so
prevented from escaping away into the rock.

This point is further clarified in Figure 3(b), which shows the vertical velocity component
v = −∂8/∂y as a function of coordinatey, along the linex = σ for this same case. A clear
region of positive velocityv is evident in the approximate interval−1·035< y < −1·02, and
this shows that, in this interval, the injected water is movingupwardsalong the linex = σ , so
preventing any downward motion of the acid.

The asymptotic solution of Section 5 is capable of giving an estimate of the location of the
two stagnation points in the flow field, along the vertical linesx = ±σ . All that is required
is to compute an analytical expression for the velocity vectorq, using the Darcy law (4a)
and the approximate expression (19) for the total pressure, and then to seek the points where
q = 0. This has been done in the Appendix, and the location of the stagnation points may
be found from Equation (A7) given there. For the parameter values used in Figures 2 and 3,
this formula estimates that the two stagnation points occur at the heightsy = −1·01972 and
y = −1·03539, and these values are in very good agreement with the numerical results of
Figure 3(b).
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Figure 5. A portion of a computed flow field for 0< x < σ , with parameter valuesF = 0·1,
σ = 0·01, λ= 0·02, δ= 0·01 and water injection rateα = 0·7.

It turns out that there is a maximum permissible value of the water injection rateα, for fixed
values of the other parameters. This seems at first counter-intuitive, but is easily explained. As
the water injection rateα is increased, so the strengthγ of the extraction point must also
increase, since there is a fixed volume outflow permitted at infinity. Thus, increasingα results
in a stronger extraction point, which draws down the interface closer to the point at which acid
is injected.

This behaviour is illustrated in Figure 4. Two different interface profiles are shown for the
caseσ = 0·01, λ= 0·02 andδ = 0·01, for the two different valuesα = 1·33 andα = 1·44 of
the water injection rate. The scale on both axes is the same, so that the interfaces are as they
would actually appear. The acid injection point at(0,−1) is also shown. Asα is increased,
the interface moves down quite strongly toward the acid injection point, and becomes more
curved as it does so. Presumably the interface would eventually meet the source point at
(0,−1), although the numerical method of Section 4 fails to converge before this occurs, and
in fact the interface shown withα = 1·44 is the largest value of the water injection rate that we
could compute for these parameter values. In any event, an interface that actually incorporates
the acid source point is unlikely to be of much practical interest, even if it is a theoretical
limiting case, and so has not been pursued further here.

It is by no means the case that the only leaching strategies that recover all the leaching
acid are those for whichα is close to its theoretical maximum, as in Figure 2. To illustrate this
point, a solution is shown in Figure 5 with only half the water input rate,α = 0·7. For this
case, complete blocking of the acid by the water balloon still occurs, as will be seen presently,
even although the water injection rate is only 70% of the acid injection rate. The free boundary
is not shown in this figure, since it has moved up to the levely = −0·95500. This agrees with
the valueY0 obtained from the asymptotic solution (21) to at least five decimal places, and the
numerically obtained interface is flat to this same accuracy. This confirms that the numerical
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Figure 6. Vertical velocityv at the edgex = σ of the periodic region, as a function of depth coordinatey. Here,
F = 0·1, σ = 0·01, λ= 0·02, δ= 0·01 andα = 0·7.

method of Section 4 is capable of very high accuracy in this problem. In all other respects,
however, the solution of Figure 5 is rather similar to that shown in Figure 2, since all the
acid is eventually drawn into the recovery point at(0,−1·02). Some of the water injected at
(0,−1·03) is also withdrawn at the extraction point, and the rest moves down into the rock.
From a practical point of view, Figure 5 withα = 0·7 is probably to be preferred over the flow
field shown in Figure 2, since it still recovers all the acid, it leaches a larger volume of rock,
and it uses much less water.

To confirm that the caseα = 0·7 in Figure 5 does indeed block the escape of acid from the
desired leaching region, the vertical velocity atx = σ = 0·01 has been plotted in Figure 6, as
a function of the depth coordinatey. This graph shows apositivevertical component, wheny
is in the approximate interval−1·032< y < −1·023. This is therefore qualitatively similar
to Figure 3(b), and once again indicates that the downward motion of the leaching acid is
ultimately blocked by the upward motion of the injected water towards it, even atx = σ . The
asymptotic solution of Section 5 again gives very close agreement with the numerical solution
in this case; from Equation (A7) in the Appendix, we compute the location of the stagnation
points to bey = −1·02287 andy = −1·03225.

In Figure 4 it was seen that, for fixed horizontal spacing 2σ between leaching wells, in-
creasing the water injection rateα caused the wetted surface to drop down toward the acid
injection point, and this led to one type of limiting configuration in which the interface itself
presumably touches the acid source. We now investigate the situation in which the water
injection rateα is kept fixed, but the distance between the wells is increased.

Four interfaces are shown in Figure 7, for the four values of the half-distanceσ between
wells σ = 0·01,0·015,0·02 and 0·025. The other parameters have the valuesλ = 0·02, δ =
0·01 and the water injection rate is fixed at the valueα = 0·7, as in Figures 5 and 6. The scale
on both axes is the same, so that the interfaces are shown as they would appear.
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Figure 7. Four different interfaces corresponding to distancesσ = 0·01, σ = 0·015, σ = 0·02 andσ = 0·025 for
the caseF = 0·1, λ = 0·02, δ = 0·01 and water injection rateα = 0·7. The scale on both axes is the same, and
the acid injection point, the extraction point and the water injection point are all shown with arrows indicating the
direction of flow. The interface forσ = 0·02 has been drawn with a dotted line.
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Figure 8. Vertical velocityv at the edgex = σ of the periodic region, as a function of depth coordinatey. Here,
F = 0·1, σ = 0·02, λ= 0·02, δ= 0·01 andα = 0·7.

The results in Figure 7 are in accordance with physical intuition. As the well separation
parameterσ is increased, the level of the interface drops, and the interface itself becomes more
curved. The largest value ofσ for which the numerical method of Section 4 converged was
the caseσ = 0·025, and this is also shown on the diagram. In this case, the interface is very
highly curved indeed, and its lowest point (atx = σ ) lies below even the point at which the
water balloon is injected. It seems clear that there will be a limiting value ofσ , at which the
point of intersection between the interface and the effective wallx = σ falls away to infinity.
If σ is increased beyond this value, then the interfaces in each periodic cell will not join up,
and each well will be surrounded by its own detached vertical plume of acid and water, similar
to the situation investigated by Forbes [11].
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Of greater practical importance is the value ofσ at which complete blocking of the acid
still occurs. Of the solutions shown in Figure 7, only the caseσ = 0·01 appears to fulfil
this criterion. To illustrate this, the vertical velocity componentv has been shown in Figure
8 at the effective wallx = σ , for the caseσ = 0·02. Now it is clear that there is no region
for which the vertical velocity is positive, and that, as a result, the water balloon cannot act
to block the downward movement of acid, which must of necessity escape away to infinity.
This is therefore a situation which practioners would be keen to avoid, on both economic and
environmental grounds.

7. Discussion and significance

This paper has used a boundary integral method to study a strategy for two-dimensional
mineral leaching, in which the overall aim has been to attempt to recover all the leaching
fluid introduced into the rock. This is motivated by obvious environmental and economic
factors. In practice, the two-dimensional geometry assumed here would be achieved by the
use of horizontal perforated pipes with lengths that are orders of magnitude greater than their
diameters. Bartlett [1] indicates that horizontal drilling is now possible, so that the assumption
of two-dimensional flow may be close to the real situation in some circumstances. In addition,
horizontal pipes have been used in leaching trials in Mount Isa in Queensland, Australia, by
drilling in through the side walls of old mine shafts.

The central point of this investigation is that we have succeeded in our aim of injecting
leaching liquors into the rock, and then recovering them completely. The strategy adopted is
to use injection or extraction pipes that are spaced periodically in the horizontal direction.
This effectively creates a periodic system of cells within the rock, that possess impermeable
boundaries, and are therefore essentially isolated from one another. In each of these cells there
is an injection point for the leaching acid, an extraction point at some distance below this, and
a third point below the other two, through which a water balloon is injected. In an actual field
trial, pure water could be injected instead of leaching acid in the outer two cells in the periodic
array, and this should preserve the features of the present study.

Provided that the horizontal distance 2σ between the injection points is not excessive, the
water balloon is capable of blocking the downward motion of the acid under gravity, and so
giving complete recovery of the acid. This situation has been illustrated in Figures 2 and 5, and
is also sketched diagrammatically in Figure 9, in the picture on the left labelled ‘blocking’.
Some conditions under which this desirable situation may occur have been given. In Figure
9, the region inundated with leaching acid is shaded. On the other hand, ifσ is too large or
the injection rateα for water is insufficiently large, then complete blocking of the downward
motion of the leaching acid cannot occur, and we have instead a situation like that sketched
in the picture on the right of Figure 9 labelled ‘escaping’. Here, there is some fraction of the
leaching acid that moves around the injected water balloon and escapes away to infinity. In
such a case, the injected water does not totally block the periodic conduit, but instead forms a
vertical plume.

For a situation in which the leaching fluid is injected through horizontal pipes drilled from
the side wall of an existing mine shaft, the depthH below the surface may not be a particularly
relevant quantity, so that the parameterF could be scaled out of the problem. In that case, the
three defining parameters in the problem are the ratio of water to acid injected (α ), the relative
depthδ/λ, and the ratioσ/F . Useful relations between these three quantities are provided by
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Figure 9. Two schematic diagrams of possible outcomes in the present two dimensional mineral leaching strategy,
based on results of actual calculations with the present method. The picture on the left, labelled ‘blocking’, is the
preferred situation of complete acid recovery. In the picture on the right, labelled ‘escaping’, the water balloon
does not prevent the leaching acid from escaping away to infinity. The regions of acid are indicated by shading.

the inequalities (23) and (24), and we have indicated that practical operating conditions, with
complete acid recovery, can be expected withα in the interval 0·7 < α < 1·44, and a depth
ratio δ/λ = 0·5 and horizontal distance between injection points (based on acid injection rate
and seepage speed) 2σ/F = 0·2, for example.

Of course, an actual geological site presents extra difficulties that have been ignored in this
study. It is possible that, for a situation like the successfully blocked leaching case sketched
on the left of Figure 9, the pregnant leaching liquor may form an unstable interface with
the water balloon injected below it, which could give rise to interfacial fingering of the type
discussed by Tan and Homsy [22]. In practice, it may be possible to overcome this problem
by increasing the water injection rateα, or perhaps even by replacing the water with a fluid
of greater density. In addition, we have assumed here that the rock is homogeneous in its
permeability properties, and this is unlikely to be the case. The presence of significant fissures
in the rock would change the solutions given in this paper substantially. It is also possible that
other gradual changes in rock porosity may occur throughout the site, and these may call for
more general numerical methods, such as finite differences or finite elements, to be used in the
solution of the problem. Certainly, a detailed knowledge of the proposed leaching site would
be necessary in order to apply the strategy with confidence.

In spite of these practical difficulties, it seems that there is considerable merit in continuing
studies of this type, and these should yield results that are of practical value in the field. In
particular, a generalization of this idea to three-dimensional geometry, along the lines pro-
posed by Forbes [11], is currently under investigation, and the results of this study will appear
elsewhere.
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Appendix: Approximate location of stagnation points

In this appendix, we use the asymptotic theory of Section 5 to estimate the location of stag-
nation points in the flow, along the linex = σ . The presence of these points confirms that the
downward motion of the leaching acid is blocked by the presence of the water balloon, which
is the situation of most practical interest.

The asymptotic formula (19) for the total pressure8 is differentiated with respect toyQ to
give the (negative) vertical velocity component−vQ = ∂8/∂yQ. The coordinatexQ is then
set equal toσ . It is straightforward to confirm that the horizontal velocity component is zero
on this line, and after some algebra, the (negative) vertical component onxQ = σ becomes

−vQ(σ, yQ)

= 1

4σ

[
tanh

(
π(η− Y0− 1)

2σ

)
+ tanh

(
π(η+ Y0+ 1)

2σ

)]

− γ
4σ

[
tanh

(
π(η− Y0− 1− λ)

2σ

)
+ tanh

(
π(η+ Y0+ 1+ λ)

2σ

)]

+ α

4σ

[
tanh

(
π(η− Y0− 1− λ− δ)

2σ

)
+ tanh

(
π(η+ Y0+ 1+ λ+ δ)

2σ

)]
, (A1)

where here we have writtenyQ = Y0 − η so as to display the anti-symmetry of the vertical
velocity component about the lineyQ = Y0.

For convenience, we introduce the function

A = (πη)/(2σ ) (A2)

and the three constants

B1 =
(
π(Y0+ 1)

)
/(2σ )

B2 =
(
π(Y0+ 1+ λ))/(2σ )

B3 =
(
π(Y0+ 1+ λ+ δ))/(2σ ), (A3)

and make use of the identity

tanh(A+ B)+ tanh(A− B) = 2 sinh(2A)

cosh(2A)+ cosh(2B)
. (A4)

These relations (A2)–(A4) enable Equation (A1) to be expressed in the simpler form

−vQ(σ, yQ) = sinh(2A)
[
K1 cosh2(2A)+K2 cosh(2A)+K3

]
2σ
∏3
j=1

[
cosh(2A)+ cosh(2Bj )

] , (A5)

in which we have defined the three auxiliary constants

K1 = 1− γ + α
K2 = (α − γ ) cosh(2B1)+ (α + 1) cosh(2B2)+ (1− γ ) cosh(2B3)

K3 = cosh(2B2) cosh(2B3)− γ cosh(2B1) cosh(2B3)+ α cosh(2B1) cosh(2B2).

(A6)
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From Equation (A5), it is clear that the vertical velocity componentv is an odd function ofη,
and has a zero whenA = 0. This is the expected stagnation point on the interface, at(σ, Y0).
In addition, there is the possibility of a further two stagnation points, when the quadratic term
in the numerator of Equation (A5) becomes zero. Thus the two stagnation points associated
with the blocking of the leaching acid by the injected water balloon occur on the linex = σ
when

cosh(2A) =
−K2±

√
K2

2 − 4K1K3

2K1
, (A7)

with constantsK1, and so on, given in Equation (A6). The values ofη (> 0) and henceyQ at
which the two stagnation points occur may now be computed from this formula. In principle,
Equation (A7) also yields the values of the physical parameters for which the desired blocking
of the acid will occur, since the argument of the square root must be positive and the entire
right-hand side must be greater than one, if real solutions are to exist. In practice, however,
these transcendental algebraic conditions do not appear to yield to explicit inequalities, and so
each choice of parameter values must be tested separately.
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